Program	BS Physical Education	Course Code	PE-355	Credit Hours	01
Course Title	Sports Biomechanics (Practical)				

Course Introduction

The practical component of the Sports Biomechanics course is designed to give students hands-on experience in analyzing human movement and understanding the mechanical principles underlying sports performance. Students will engage in various activities, including motion analysis, force measurement, and biomechanical modelling. These practical sessions reinforce theoretical knowledge and develop valuable skills essential for sports science and physical education.

Learning Outcomes

On the completion of the course, the students will:

- Understand the fundamental principles of biomechanics and their application to sports.
- Analyze human movement using biomechanical principles.
- Apply biomechanical concepts to enhance athletic performance and prevent injuries.
- Utilize biomechanical tools and technologies for movement analysis.
- Critically evaluate biomechanical research and its implications for sports practice.

Course Content		Assignments/Readings
Week 1	 Introduction to Practical Sessions Orientation to the biomechanics lab Safety procedures and ethical considerations in biomechanical testing Overview of practical session objectives and expectations 	From Books and Class Lectures
Week 2	 Basic Kinematic Analysis Introduction to kinematics: displacement, velocity, acceleration Using video analysis software for motion capture Analyzing basic movements such as walking and running 	From Books and Class Lectures
Week 3	 Advanced Kinematic Analysis Analyzing complex movements in different sports Identifying key phases of movement and critical events Using software to create kinematic graphs and reports 	From Books and Class Lectures
Week 4	 Force Measurement Introduction to kinetics: forces and torques Using force plates to measure ground reaction forces Analyzing force data during different activities 	From Books and Class Lectures
Week 5	 Joint Angle and Range of Motion Analysis Measuring joint angles using goniometers and inclinometers 	From Books and Class Lectures

	Analyzing the range of motion in different sports movements	
	• Comparing joint angles and range of motion across athletes	
	Muscle Activity Measurement	
Week 6	 Introduction to electromyography (EMG) Recording and analyzing muscle activity during different movements Understanding muscle activation patterns in various sports 	From Books and Class Lectures
	Biomechanical Modeling	
Week 7	 Creating simple biomechanical models of the human body Understanding the principles of inverse dynamics Using software to simulate and analyze sports movements 	From Books and Class Lectures
	Gait Analysis	
Week 8	 Understanding the biomechanics of gait Conducting gait analysis using motion capture and force plates Analyzing gait parameters and identifying abnormalities 	From Books and Class Lectures
	Jump Analysis	
Week 9	 Analyzing the biomechanics of vertical and horizontal jumps Using motion capture and force plates to measure jump performance Understanding the factors influencing jump height and distance 	From Books and Class Lectures
	Throwing and Striking Analysis	
Week 10	 Analyzing the biomechanics of throwing and striking motions Recording and analyzing data using high-speed cameras and force plates Identifying key performance indicators in throwing and striking 	From Books and Class Lectures
	Balance and Stability Analysis	
Week 11	 Understanding the biomechanics of balance and stability Conducting balance tests using force plates and balance boards Analyzing balance data and identifying factors affecting stability 	From Books and Class Lectures
Week 12	Biomechanics of Equipment and Technology	From Books and Class
	Analyzing the impact of sports equipment on performance	Lectures

	Conducting tests to evaluate the biomechanics of different equipment.				
	different equipmentUnderstanding the role of technology in enhancing				
	sports performance				
	Biomechanical Assessment in Rehabilitation				
Week 13	 Applying biomechanics in injury prevention and rehabilitation 	From Books and Class Lectures			
	Conducting biomechanical assessments for injured athletes				
	Analyzing data to develop rehabilitation programs				
Week 14	Sports Performance Analysis				
	Integrating kinematic and kinetic data for performance analysis	From Books and Class			
	• Conducting comprehensive biomechanical	Lectures			
	assessments of athletes				
	Developing strategies to enhance sports performance				
	based on biomechanical data				
	Practical Exam Preparation				
Week 15	Review of key concepts and techniques learned	From Books and Class			
	throughout the course	Lectures			
	Hands-on practice with equipment and software				
	Preparation for the practical exam				
	Practical Exam and Review				
Week 16		From Books and Class			
	Practical exam assessing skills learned throughout the course	Lectures			
	Review session and discussion of key learnings				
	Course wrap-up and feedback				
Toythooks and Dooding Motorial					

Textbooks and Reading Material

Textbooks

- Hall, S. J. (2019). Basic biomechanics (8th ed.). McGraw-Hill Education.
- Hamill, J., Knutzen, K. M., & Derrick, T. (2020). Biomechanical basis of human movement (5th ed.). Wolters Kluwer Health.
- Luttgens, K., & Hamilton, N. (2021). Kinesiology: Scientific basis of human motion (12th ed.). McGraw-Hill Education.
- McGinnis, P. (2017). Biomechanics of sport and exercise (4th ed.). Human Kinetics.
- Robertson, G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2018). Research methods in biomechanics (2nd ed.). Human Kinetics.
- Watkins, J. (2018). An introduction to biomechanics of sport and exercise (2nd ed.). Routledge.